Treatment of TCE to 30 Meters in Fractured Granite – How to Address a Site When you Cannot Drill and Sample the Rock?

Steffen Griepke Nielsen Gorm Heron Amber Bonarrigo Anthony Caravella **TerraTherm, Inc.**

Erik Pearson Carol Serlin **Ramboll**

Site Background

Background:

- Since the 1950's site was used for testing aerospace components.
- About 15 years ago operations at the site were discontinued and since then most structures have been demolished
- TCE is the main contaminant at the site

Main challenges:

- The exact source zone and treatment volume was still to be refined.
- TCE was present in fractures below the water table.
- The fracture network is complex vapor recovery was essential.
- A novel method for determining remedial completeness was needed, due to the difficulty of collection of rock samples in the middle of the well-field during operations.

The Challenge: Fractured Rock

COCs present in matrix

Advection-Dispersion In Fracture g.w. velocity Diffusion into Matrix

Fracture-dominated flow

Key for Thermal in Rock

- Determine TTZ in 3 dimensions
- Ensure steam capture
- Match heating technology to site
- Ensure heating
- Adapt sampling to track progress

Heating Methods

TCH/ISTD - Heating governed by thermal conductivity

ET-DSP/ERH - Heating governed by electrical conductivity

SEE - Heating governed by hydraulic conductivity

Limitations for SEE

Resistivity low enough for ERH/ET-DSP?

- Steam only travels in fractures
- Fractures may be too small for effective steam migration
- Will not heat volume between fracture zones (competent bedrock)

Edwards AFB, CA. Fractured granite pilot (SteamTech)

Electrical Resistance Tomography (ERT) data planes during SEE

Limitations for ERH

Resistivity low enough for ERH/ET-DSP?

Palacky, G.V. (1987), Resistivity characteristics of geologic targets, in Electromagnetic Methods in Applied Geophysics, Vol 1, Theory, 1351

- Required soil resitivity: idealy ~<500 Ω*m
- Shales, sandstone, weathered rocks: 2-2,000 Ω*m
- Igneous, metamorphic, dolomite, limestone: 1,000-100,000 Ω^* m
- Solid bedrock in itself cannot be heated using ERH it is too resistive
- More porous rock needs to be wet

Archie's law:

ER = C × (sat)^{-m}

ERH:

- Low-porosity rock cannot be heated
- Dry rock problematic

Why TCH is a Great Fit

[From Clauser and Huenges]

- Varies based on mineral content, porosity, pore fluid, anisotropy.
- Generally between 1.5 to 7 W/(m*K)
- Variation generally within a factor of 5

The Challenge

	TGE Conteur 1 µg/l.
	TCE Contour 10 µgl.
_	TCE Conteur 100 µgt.
	TCE Centeur 1.000 µg/L

Learn As You Drill !

Initial Concept

Flexible implementation concept improves project performance.

Site Layout – Final Concept

Vapor Extraction in Each Heater Boring

You don't know where the steam will flow

Co-located SVE Wells on the Heaters

Performance Metrix - Dilemma

• Rock concentrations not easy to obtain

Metrics used instead:

- Temperatures and energy balance
- Mass removal rate and total
- Groundwater sampling
- Vapor concentrations in co-located SVE wells

NOT FEASIBLE AT THIS SITE

Rock Chips Extracted in Methanol - Case

NJ ESTCP site:

- Matrix COC reduction relatively easy
- TCE levels highest near fractures

ESTCP Project # ER0715

Average Temperature and TCE Behavior

Exceed the boiling point of water-DNAPL and then heat to the boiling point of water

Energy Balance and Mass Removal

Nested Soil Vapor Probes

Vapor Samples from Heater Borings

Liquid samples (ug/L)

Average TCE Concentration	verage TCE Concentration and Removal			
Pre-ISTR Treatment	2,765	µg/L		
Post-ISTR Treatment (14 months after shutdown)	267	μg/L		
Removal Efficiency	90.3	%		

≥90% reduction

≥99% reduction

≥80% reduction

>70% reduction

<70% reduction

Conclusions

- Proper technology selection
- Learn as you drill!
- Extract from all the heater wells
- Use smart monitoring to know when you are done
- Proper communications with regulators and an open dialogue ensures that remediation expectations are aligned

